Neural codes for memory implants

See on Scoop.itTracking the Future

The ability to short-circuit debilitating tremors in disease states with implantable stimulators is nothing short of remarkable. The same can be said for cochlear prosthetics which restore hearing, and more recently, retinal implants which give some rudimentary light-sensing capability to the blind. The logical extension of these sensorimotor restorative devices converges upon something a bit more extravagant—a purely cognitive implant—namely, the memory prosthetic. At the present time, there is only one researcher that has consistently demonstrated command of the technologies which would make such a device possible. Ted Berger, and his group from the University of Southern California, have recently extended their initial efforts to develop hippocampal memory devices in mice, to create full frontal cortex implants for primates. Berger published the initial results of these studies last September, in the Journal of Neural Engineering. This June, he will be a featured speaker at the Global Futures 2045 International Congress in New York, which will spot several visionaries in neuroscience and AI. Before he runs away with the show, it important to take a closer look at the exact methods he is using, and also the assumptions about possible neural codes upon which they are built.

See on

Posted in Uncategorized

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 9 other followers

%d bloggers like this: